The Operating System of Things

Christopher Streiffer

cdstreif@cs.duke.edu

Ali Razeen

alrazeen@cs.duke.edu

November 10, 2017

1 Introduction

Numerous groups have proposed different IoT (In-
ternet of Things) hub platforms to help users easily
deploy and manage the IoT devices in their homes
and other environments [23] 14} [T6], [T9]. These plat-
forms are supposed to hide the complexity of the
ToT devices and derive utility from them via apps
that monitor the installed sensors and perform au-
tomated actions. However, none of the existing
platforms have emerged as a clear winner in terms
of market share and even though IoT, as a whole,
has seen some traction among users, it is still in its
infancy compared to adoption of other technologies
such as smartphones [10} [17].

We believe that a successful IoT hub platform
should provide the following properties: (i) it
should be easy for developers to write IoT apps,
(ii) it should be easy for users to install an arbi-
trary mix of apps, and (iii) users should retain con-
trol over their devices and know that their prefer-
ences and safety are not going to be compromised.
It should not be possible for an app to interfere
with other apps and send conflicting commands
to a shared IoT device, thereby inconveniencing
a user, and it should not be possible for apps to
violate a user-specified invariant in the IoT envi-
ronment. To the best of our knowledge, we do not
know of an existing hub platform that provides the
above properties; they typically restrict how apps
are written [I4] [T6] [9, [©], lack a comprehensive per-
missions framework that lets user manage an app’s
access to a device [3, 12, 19, 24], or do not pro-
vide an easy way of ensuring user-preferences are
violated [23].

In this proposal, we discuss the design of a new
hub platform that meets the above requirements.
Our platform is inspired by the abstractions used
in Software-Defined Networks (SDNs). In SDNs,
the data plane and the control plane are decoupled,

thereby allowing both to operate independently.
For example, when a switch receives a packet from
a new sender, it notifies the controller, which then
computes how the packet should be handled and in-
stalls forwarding rules on the switch. Subsequently,
further packets from the same sender are forwarded
automatically without the involvement of the con-
troller. The communication between the switches
and the controllers is defined by OpenFlow [I8], an
event-driven protocol. When the underlying net-
work state changes, switches send events to the
controller. The controller will forward these events
to the network apps running on it. In response to
these events, apps may send commands back to the
switches.

This event-driven paradigm is central in our hub
platform. As with OpenFlow, the hub will send
events to apps whenever the state of the IoT envi-
ronment changes. When the hub receives command
from apps, it will perform a series of checks to en-
sure that the different commands do not conflict
with each other, and that the commands do not vi-
olate user preferences. If a command passes these
checks, it will be sent to the IoT device to perform
the actuation task. Otherwise, the command is re-
jected and the app responsible for the command is
notified. Apps may only communicate to the de-
vices via the hub and will not have direct access to
them.

The above design meets the criteria we outlined
for a successful hub platform: (i) the event-driven
paradigm is flexible and imposes minimal restric-
tions on how developers write their apps, (ii) the
hub can inspect and control commands from apps
to ensure that users retain control over their devices
and that apps do not interfere with each other.

The rest of this proposal is organized as follows.
We describe in detail the design and programming
model of our platform in Section [2] and Section
respectively. We discuss some additional features

Application Plane

App App App App App App

Control Plane

[Message System]

Firewall

Driver Driver Driver Driver Driver

Device Plane

[poves | [oevce | [povee | | oovice | [oosce |

Figure 1: A block diagram of our proposed con-
troller.

we believe are important to the commercial success
of our platform in Section @] Finally, we survey
related work in Section

2 System Design

Our proposed platform provides a simple, but pow-
erful model for developing and deploying applica-
tions within smart environments. In Figure |1} we
show a block diagram view of our controller. At a
high level, it consists of three layers — the applica-
tion plane, control plane, and device plane.

The control plane is responsible for handling all
communication between the devices and applica-
tions, which reside in the device and application
planes respectively. It is entirely event-driven and
it uses a combination of periodic polling and push
notifications from the devices to keep track of their
states. When a device’s state changes, the con-
troller broadcasts a state update event to all run-
ning applications.

If an application responds to an event with a
command, the controller first validates the com-
mand. If the command is accepted, then the con-
troller updates its view of the application’s state
and sends the command to the device. For exam-
ple, if an application sends a command to turn on
a light bulb, the controller will update the applica-
tion’s state with the tuple (A;, L;, Son), where A;

represents the application, L; represents the light,
and S, represents the state of the light. This ap-
plication state is used internally by the controller
to compute the proposed state of an application
whenever it sends a new command, which is then
used for conflict detection and resolution.

Overall, this design provides a powerful abstrac-
tion for providing fine-grained security and cleanly
separates the three different layers. We now de-
scribe each of them in greater detail.

2.1 Device Plane

The device plane consists of the IoT devices run-
ning within the system. In our design, each device
connects to the controller over whichever protocol
is best suited for the device e.g. Bluetooth, 802.11,
etc. From an application’s perspective, the connec-
tion between a device and the controller is persis-
tent, and the controller is responsible for handling
transient failures.

We note that the device state may be updated ei-
ther through physical interactions with the device,
or through the programmable interface within our
system. A physical interaction could range from
a power failure to an individual directly interact-
ing with the device i.e. turning off the smart de-
vice. We assume that the communication channel
between a device and the controller is bidirectional,
and that a device can respond to state poll mes-
sages from the controller. If supported, the device
may also push its state updates to the controller.

2.2 Application Plane

The application plane is responsible for running all
programs installed within the system. Programs
may be written with any programming language
e.g. Java, C++, Python, Go, etc. as long as they
use our event-driven API. We will provide libraries
for each language to minimize the burden of using
our API. The programming model for our system
will be discussed in more detail in Section [3l

To allow further flexibility, applications are not
restricted in the location where they must be exe-
cuted, and can be run off-device if necessary. For
instance, a program which utilizes a deep learn-
ing framework can be run on edge infrastructure
to gain access to greater computational power. As
data analytics have proven to be a driving force
behind smart environments, we believe that this

design is necessary in order to support smarter ap-
plications.

2.3 Control Plane

The control plane is composed of three layers —
driver, firewall, and message handler. The driver
exposes an interface for communicating directly
with IoT devices. The firewall handles all commu-
nication between the driver and message handler,
and acts as a filter to ensure system invariants are
not violated and to perform conflict resolution be-
tween conflicting application states. The message
handler is responsible for maintaining communica-
tion with applications, ensuring message delivery,
and transmitting commands to lower layers.

Driver Layer: The driver exposes an interface
that allows for the controller to communicate with
the IoT devices supported by our system. Each
IoT device will have an accompanying driver which
implements the protocols to communicate with the
device. A driver also exposes a common interface
to the firewall to allow for communication to be
standardized across each device. Further, a driver
is responsible for converting generic commands into
device-specific operations. This allows for our pro-
gramming framework to be device agnostic such
that developers can design their applications to op-
erate on generic types e.g. Smart Light.

Firewall Layer: The firewall has two pri-
mary responsibilities — ensuring system invariants
are never violated and performing conflict resolu-
tion. The firewall allows for users to implement
both coarse-grained and fine-grained policies. The
coarse-grained policies consist of defining access
control between applications and devices. For in-
stance, the user may specify that an application
responsible for controlling the heating should not
interact with a smart door lock.

The fine-grained policies allow for users to define
device states which should never be violated. These
are typically system invariants which should never
be violated. Further, we provide a powerful match-
ing engine to allow users to define these invariants
based on sophisticated system state, if required.

The second responsibility of the firewall is to
perfrom conflict resolution. Because the con-
troller keeps track of application state and device
state, the firewall can detect conflicts between up-
dates. Suppose the user has a power-saving appli-
cation and lighting-management application run-
ning within their system. Now suppose the power-

saving application issues a command to a turn off
a smart light. At the same time, the lighting-
management application issues a command to turn
the light on. Because the controller keeps track of
application state, it will detect a conflicting action
between the two applications. In this instance, the
firewall will send a notification to the user asking
her to resolve the conflict. Further, the system will
ask the user if they would like to define a default
rule for handling this conflict, or to assign a priority
to one of the applications.

Therefore, the flow for conflict resolution con-
sists of (i) checking system invariants defined by
the user, (ii) checking application priority, and (iii)
asking the user to directly resolve the conflict. In
order to facilitate ease-of-use, we provide an admin-
istrative interface to the user which allows for them
to construct these policies in an intuitive manner.

Messaging Layer: The messaging layer is re-
sponsible for ensuring the delivery of messages be-
tween the applications and the lower layers. Al-
though all communication is carried out via mes-
sages, our system is also capable of supporting ap-
plications which require data streams from IoT de-
vices.

3 Programming Model

The programming model of our platform conforms
to the following rules:

1. All communication between devices and appli-
cations are based on strictly-defined messages.

2. Applications may use filters to subscribe to
specific event types.

3. Applications may react to events from the con-
troller by sending commands to the controller.

The controller will send events to an application
based on the devices it can access. An application
with an access to a light bulb will receive a state
update message if the user manually turns off the
light bulb. However, it will not receive events about
other devices. In addition to device state updates,
the controller also provides other types of events.
For example, to simplify application development,
the controller provides a notion of time and makes
available the time change event. This event will be
delivered to an application based on the requested
granularity (once every hour, day, etc.). If the con-
troller receives a command from an application, it

will respond with a command status message, to
indicate if the command was rejected or accepted.
We believe this event-driven model to be simple
and it imposes minimal restrictions on how apps
are written.

We expect some [oT devices to stream data at
a high rate. To support such devices without the
overhead of generating one message per data item,
the controller can send a device data event that
contains within it a device descriptor, which may
be used by applications to read data from the de-
vice. This reduces the overhead of reading stream-
ing data without ceding the controller’s control over
the device; if necessary, the controller can always
invalidate the descriptor and prevent the applica-
tion from reading any more data.

If a user revokes an application’s access to a de-
vice, the controller will send device offline message
to the application, and will reject all future com-
mands from the application addressed to that de-
vice. We believe that this will incentivize applica-
tion developers to write robust applications, since
the API makes it clear that they may lose access
to a device, and that the commands they send may
not be accepted.

4 Additional Features

We additionally provide two software components
for increasing the functionality of our system. The
first component is an emulator which can be used
to test and debug applications within virtual smart
environments. The second component is an appli-
cation store to connect developers and users.

4.1 Emulator

The primary purpose of the emulator is to create
virtual environments for testing and debugging ap-
plications. We believe that this will be useful for
both application developers and end-users, and de-
scribe some use-cases below:

Development: Developers may use our emu-
lator to write applications and test out platform
without having to buy the IoT hardware.

Debugging: Because our system is entirely
event and command driven, we can provide a de-
terministic total-ordering of messages processed by
the controller. Because all traces of events and
commands are logged by the controller, we can

recreate the state of the system leading up to a
crash using the emulator.

Integration Testing: We believe that it will be
highly beneficial for users to be able to test appli-
cations within their smart environment before in-
stalling them. The emulator can, in conjunction
with the installed applications and devices, show
users how the application will work with the exist-
ing smart environment.

4.2 Application Store

We provide an app store to connect users and de-
velopers. The main purpose of the store is to allow
users to find applications tailored to their smart en-
vironments. Users will be able to query the store to
discover applications that they can run with their
existing devices. The application store can also
suggest new applications or new devices to buy. Fi-
nally, the store provides developers with financial
incentives to write useful applications.

5 Related Work

A large number of IoT systems have been proposed
in the academic literature, the open-source commu-
nity, and by companies selling proprietary systems.
In this section, we broadly survey these existing
systems and discuss how they relate to our pro-
posed system.

Controller platforms

A lot of the existing controller platforms have goals
similar to ours. They run in the centralized hub of
an IoT deployment, mediate accesses to the IoT de-
vices, and provide a single interface over the devices
they manage. This interface allows users to access
their devices without worrying about hardware-
specific details (such as how the devices are con-
nected to the hub and what communication proto-
col they use). The existing systems typically also
provide a dashboard to allow users to easily mon-
itor and manage their IoT devices. In these as-
pects, our proposed system and these existing sys-
tems share a common goal: make it easy for users
to manage their IoT devices.

The differences between our proposed system
and the existing systems are better understood by
recounting the key features of our system. First,

the firewall plays a central role in managing con-
flicting IoT commands from different apps and in
ensuring user-specified invariants are not violated.
Second, our event-driven programming model is
flexible and imposes few restrictions on how devel-
opers write their apps; it does not require them to
use a particular programming language nor does it
restrict apps from using external services (such as
the cloud). Third, the permissions framework in
our system allows users to control which apps have
accesses to which devices, and allows users to easily
revoke an app’s access to a device. We believe that
all three features have to be present to (i) enable de-
velopers to easily write IoT apps and publish them
to a marketplace, (ii) allow users to download ar-
bitrary third-party apps without worrying about
whether the apps may conflict with each other,
and (iii) let users retain control over their IoT en-
vironment. An added benefit of our event-driven
paradigm, in conjunction with the firewall and the
permissions framework, is that developers will be
trained to write resilient apps from the beginning,
since the API makes it clear that an app may lose
its access to a device and that the commands they
send to the controller may be rejected.

We have not found an existing system that com-
bines all three features and quite notably, we did
not find a system with a concept that handles all of
our firewall’s tasks. We now discuss these existing
systems by comparing them to the key features of
our system.

HomeOS [23] is remarkably close to our pro-
posed system. It uses Datalog to express access
control rules and provide a permissions framework
and a simple app-priority scheme to mediate con-
flicts caused by commands from different apps to
the same shared device. However, user-specified
invariants are not a first-class citizen in HomeOS,
and therefore, it may be difficult to avoid unpleas-
ant outcomes.

Consider the following scenario: a user has a
space heater in her bedroom and has an app that
turns on the space heater whenever she is in the
room and turns it off otherwise. She might have
another app that controls the thermostat in the liv-
ing room and powers on the heating system when
the temperature falls below a threshold. She also
has an invariant to state that the heating system
and the space heater should not both be turned on
at the same time.

In our system, this invariant is maintained with-

out requiring any coordination between the apps.
If the user is in her bedroom, the commands from
the thermostat app to turn on the heating system
are rejected. It is not clear how HomeOS will han-
dle such requirements in their current formulation
of their datalog rules, which only encodes “that re-
source r can be accessed by users in group g, using
module m, in the time window from T to T,, on
day of the week d, with priority pri and access mode
a.”

Another key difference between our system and
HomeOS is in the programming framework. We
believe that the event-driven paradigm of our API,
which is heavily inspired by OpenFlow, is powerful
and yet flexible. It allows developers to write their
apps in any language, as long as they can commu-
nicate with our controller. Similar to OpenFlow,
this also introduces a layer of separation between
apps and the controller platform and allows both
to evolve independently. In HomeOS, apps have to
be written in C# since HomeOS uses C# language
features (such as System.AddIn) to load apps as
modules into the OS. HomeOS also restricts an
app’s access to the Internet for the sake of user pri-
vacy. We do not impose this restriction as develop-
ers may wish to write apps that use cloud services
to perform analytics or access APIs from other ser-
vice providers. They may even write apps that run
in the cloud. In our system, before users install an
app, we display whether the app uses the Internet
and where it runs, and leave it to them to decide
whether they trust that app.

In Eclipse SmartHome [6], OpenHAB [14] and
OpenRemote [16], apps have to be specified as rules
within the included rule engine. A rule is an action
that executes when the triggers associated with it
fires. For example, the user can specify the rule:
“turn on the lights in this room if someone walks
into it.” In these systems, apps are constrained by
the rule engine and it is difficult, for example, to
write an app that access cloud services.

In contrast to rule engines, DeviceHive [3],
Machina.io [12], The Thing System [19] and
Zetta [21] provide a flexible API to access the IoT
devices. Developers may use web-based protocols
in their apps to communicate with these controllers
and control the IoT devices. However, these sys-
tems lack a permissions framework. Once the user
grants an app access to a device, it is difficult for
the user to revoke that access.

The controller platforms discussed so far (includ-

ing our proposed system) are primarily focused on
IoT environments with a single hub controlling a
multitude of devices. In contrast to this, DSA [4]
and Kaa [II] support distributed IoT networks,
where multiple IoT environments, each with a sep-
arate hub, are logically connected together. DSA
and Kaa enable the collection of data from dis-
tributed IoT environments for analytics purposes,
and also provide an API to control the various
distributed devices. Distributed IoT environments
may be used in agricultural settings (monitoring
many geographically-dispersed farms), industrial
settings (monitoring factories), or retail environ-
ments (monitoring large shops).

Although we are interested in developing a sys-
tem that also works in distributed IoT environ-
ments, we leave it to future work. That said, DSA
and Kaa suffer from some of the same limitations
as the controller platforms seen earlier: they both
do not have a firewall to handle conflicting com-
mands and ensure user-level invariants, and their
permissions framework is inflexible.

Programming frameworks

Different programming frameworks have been pro-
posed to write IoT apps. These are orthogonal to
our system and are, in theory, compatible with the
event-driven API provided by our system.

Node-RED [13] and Calvin [2] are frameworks
for programming IoT apps. They are based on the
flow-based programming [7] paradigm where pro-
grams are expressed in terms of their data flows.
That is, instead of writing an IoT app as a mono-
lithic program in a control flow language such as C
or Java, developers express their apps in terms of a
directed graph. Each node in this graph represents
either a (i) data source, (ii) data sink, or (iii) an
operation on the data, and the edges represent the
flow of data between nodes.

As these frameworks abstract away the details
of how the app executes in practice, it makes it
possible for a developer to experiment with differ-
ent deployment strategies without requiring exten-
sive changes to the app. For example, a developer
could initially choose to deploy the whole app in the
cloud. At a later time, she can choose to execute
parts of the app graph directly on the IoT devices.
She just has to ensure that the nodes connected in
the graph have valid communication channels. This
is not as easily achieved in traditional programming
languages.

IFTTT (If-This-Then-That) [9] is a trigger-
action rule engine for writing simple IoT apps. It
works with a large number of commercial IoT de-
vices and online services, such as Facebook and
Twitter. This is similar to the rule engine in Open-
HAB and OpenRemote, but it runs in the cloud
and is not tied to a particular controller. IFTTT
does not provide any conflict-avoidance mechanism
and it has been shown that it is possible for users
to combine multiple rules and inadvertently cause
a violation in terms of personal privacy, security,
and etc. [28].

Visualization tools

A number of systems have been developed primar-
ily to visualize data from IoT sensors. Bug Labs [I]
provides Dweet [5], a simple messaging abstraction
for publishing data to the cloud in key-value pairs,
and Freeboard [8], a web-based visualization dash-
board for data collected via Dweet. OpenloT [15] is
system for collecting data from IoT sensors into the
cloud for monitoring and visualization. OpenloT
also semantically annotates the data collected from
sensors using the W3C SSN (Semantic Sensor Net-
work) specification [20]. These visualization tools
are orthogonal to our proposed system. Users may,
if they choose to do so, install apps to publish their
data to the cloud and visualize them with existing
tools.

Research proposals

Although none of the controller platforms we sur-
veyed combines the features we believe are crucial
for a successful IoT system, some of the problems
we aim to address have been discussed in the aca-
demic literature.

In a recent proposal, Balaji et al. highlight the
importance of modeling and enforcing constraints
an IoT environment [22], which are dictated by
physical and human laws, and by user preferences.
This is equal to the firewall in our proposed system.
They briefly propose capturing the constraints in a
state-space model and capturing the dependencies
between a physical environment and the IoT de-
vices in it in a graph. They suggest that this will
help in checking if an actuating decision will vio-
late a constraint. Unfortunately, they stop short of
showing a concrete solution and leave it as an open
problem for further research. In our system, con-
straints (or invariants), are captured and enforced

by the firewall.

There has also been work in the addressing the
problem of conflicting IoT apps. DepSys is one of
the first systems to propose a solution to conflict-
ing apps in a smart home environment [27]. In
DepSys, developers have to specify how their app
affects the physical environment, the different op-
erations an app may make, and the priority of each
operation. We consider this approach as too bur-
densome to the developer. SIFT is another system
to detect conflicts by smart home apps [25]. In
SIFT, developers write their apps in if-then rules,
similar to IFTTT and other rule engines. SIFT will
use model checking to test the apps against policies
specified by users to look for policy violations. This
approach is unsatisfactory as it severely constraints
how developers may write their apps.

Ma et al. studied conflicts in a city-wide IoT
environment (“smart cities”) [26] and discuss the
reasons why conflicts happen. They also propose
a watchdog service to detect and resolve conflicts.
Their watchdog uses a variety of inputs to detect
conflicts, including DepSys, and resolves conflicts
by involving human decision makers in the loop
and machine learning. Although we are trying to
address single-hub IoT environments to begin with,
it is possible to re-use the techniques proposed by
Ma et al. For example, it is possible to use machine
learning in our firewall to quickly address conflicts
during runtime.

Lee et al. showed that the permissions scheme
used in existing IoT platforms to grant apps ac-
cess to devices suffers from a number of shortcom-
ings [24]. Because of its coarse-grained nature, apps
will either have no access to a device or have com-
plete control over it. While this is clearly undesir-
able in adversarial settings, it is inadequate even in
the absence of malicious apps since multiple apps
having complete control over a shared device may
result in conflicting control over the device. To
remedy this, they propose FACT, a fine-grained
access control system for IoT devices where each
sensing and actuating functions supported by a de-
vice are protected by individual permissions.

They provide the example of a smart door lock
that has two sensing states, battery life and locked
status, and supports one actuating command, lock.
In this example, a battery monitoring app should
only request permissions to read the battery life
of the lock but not permissions to either read the
locked status or send the lock command. FACT is

complementary to our proposed system and it is
possible to use some of the same techniques to im-
plement our permissions framework.

References

[1] Bug Labs. http://buglabs.net/.

[2] Calvin. https://github.com/
EricssonResearch/calvin-base.

[3] DeviceHive. https://devicehive.com/.

[4] Distributed Services Architecture. http://
www.ilot-dsa.org/.

[5] Dweet. https://dweet.io/.

[6] Eclipse SmartHome. https://www.eclipse.
org/smarthome/|

[7] Flow-based Programming.
jpaulmorrison.com/fbp/.

http://www.

[8] Freeboard. https://freeboard.io/.

[9] IFTTT helps your apps and devices work to-
gether - IFTTT. https://ifttt.coml

[10] Internet of Things Institute - Why
the IoT is in its infancy. http:
//www.ioti.com/iot-engineering/
welcome-commodore-64-days-iot.

[11] Kaa. https://www.kaaproject.org/.
[12] Machina.io. https://macchina.io/.

[13] Node-RED: Flow-based programming for the
Internet of Things. https://nodered.org.

[14] OpenHAB. http://www.openhab.org.
[15] OpenloT. http://www.openiot.eu.
[16] OpenRemote. http://www.openremote. com.

[17] Rise of TIoT - Internet of Things.
https://www.huffingtonpost.com/entry/
rise-of-iot-internet-of-things_us_
59b373deed4b0bef3378ce052.

[18] SDN / OpenFlow — Flowgrammable. http:
//flowgrammable.org/sdn/openflow/|

[19] The Thing System.
thethingsystem.com.

http://

http://buglabs.net/
https://github.com/EricssonResearch/calvin-base
https://github.com/EricssonResearch/calvin-base
https://devicehive.com/
http://www.iot-dsa.org/
http://www.iot-dsa.org/
https://dweet.io/
https://www.eclipse.org/smarthome/
https://www.eclipse.org/smarthome/
http://www.jpaulmorrison.com/fbp/
http://www.jpaulmorrison.com/fbp/
https://freeboard.io/
https://ifttt.com
http://www.ioti.com/iot-engineering/welcome-commodore-64-days-iot
http://www.ioti.com/iot-engineering/welcome-commodore-64-days-iot
http://www.ioti.com/iot-engineering/welcome-commodore-64-days-iot
https://www.kaaproject.org/
https://macchina.io/
https://nodered.org
http://www.openhab.org
http://www.openiot.eu
http://www.openremote.com
https://www.huffingtonpost.com/entry/rise-of-iot-internet-of-things_us_59b373dee4b0bef3378ce052
https://www.huffingtonpost.com/entry/rise-of-iot-internet-of-things_us_59b373dee4b0bef3378ce052
https://www.huffingtonpost.com/entry/rise-of-iot-internet-of-things_us_59b373dee4b0bef3378ce052
http://flowgrammable.org/sdn/openflow/
http://flowgrammable.org/sdn/openflow/
http://thethingsystem.com
http://thethingsystem.com

[20]

[21]
[22]

[25]

[28]

W3C SSN. https://www.w3.o0rg/2005/
Incubator/ssn/ssnx/ssnl

Zetta. http://www.zettajs.org.

B. Balaji, B. Campbell, A. Levy, X. Li,
A. Mayberry, N. Roy, V. N. Swamy, L. Yang,
V. Bahl, R. Chandra, and R. Mahajan. Mod-
eling Actuation Constraints for IoT Applica-
tions. In arXiv:1701.01894, January 2017.

C. Dixon, R. Mahajan, S. Agarwal, A. Brush,
B. Lee, S. Saroiu, and P. Bahl. An Operating
System for the Home. In Proceedings of NSDI
‘12, April 2012.

S. Lee, J. Choi, J. Kim, B. Cho, S. Lee,
H. Kim, and J. Kim. FACT: Functionality-
centric Access Control System for IoT Pro-

gramming Frameworks. In Proceedings of
SACMAT ‘17, June 2017.

C.-J. M. Liang, B. F. Karlsson, N. D. Lane,
F. Zhao, J. Zhang, Z. Pan, Z. Li, and Y. Yu.
SIFT: Building an Internet of Safe Things. In
Proceedings of IPSN ‘15, April 2015.

M. Ma, S. Preum, W. Tarneberg, M. Ahmed,
M. Ruiters, and J. Stankovic. Detection of
Runtime Conflicts among Services in Smart
Cities. In Proceedings of SMARTCOMP ‘16,
May 2016.

S. Munir and J. A. Stankovic. DepSys: Depen-
dency Aware Integration of Cyber-Physical
Systems for Smart Homes. In Proceedings of
ICCPS ‘14, April 2014.

M. Surbatovich, J. Aljuraidan, L. Bauer,
A. Das, and L. Jia. Some Recipes Can Do
More Than Spoil Your Appetite: Analyz-
ing the Security and Privacy Risks of IFTTT
Recipes. In Proceedings of WWW ‘17, April
2017.

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.zettajs.org

	Introduction
	System Design
	Device Plane
	Application Plane
	Control Plane

	Programming Model
	Additional Features
	Emulator
	Application Store

	Related Work

